کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4590377 | 1334952 | 2013 | 23 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Geometric-type Sobolev inequalities and applications to the regularity of minimizers
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The purpose of this paper is twofold. We first prove a weighted Sobolev inequality and part of a weighted Morreyʼs inequality, where the weights are a power of the mean curvature of the level sets of the function appearing in the inequalities. Then, as main application of our inequalities, we establish new Lq and W1,q estimates for semi-stable solutions of −Δu=g(u) in a bounded domain Ω of Rn. These estimates lead to an L2n/(n−4)(Ω) bound for the extremal solution of −Δu=λf(u) when n⩾5 and the domain is convex. We recall that extremal solutions are known to be bounded in convex domains if n⩽4, and that their boundedness is expected — but still unknown — for n⩽9.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 264, Issue 1, 1 January 2013, Pages 303-325
Journal: Journal of Functional Analysis - Volume 264, Issue 1, 1 January 2013, Pages 303-325