کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590378 1334952 2013 11 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Bohnenblust–Hille inequality and a variant of Littlewoodʼs 4/3 inequality
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the Bohnenblust–Hille inequality and a variant of Littlewoodʼs 4/3 inequality
چکیده انگلیسی

The search for sharp constants for inequalities of the type Littlewoodʼs 4/3 and Bohnenblust–Hille has lately shown unexpected applications in many fields such as Analytic Number Theory, Quantum Information Theory, or in results on n-dimensional Bohr radii. Recent estimates obtained for the multilinear Bohnenblust–Hille inequality (for real scalars) have been used, as a crucial tool, by A. Montanaro in order to solve problems in Quantum XOR games. Here, among other results, we obtain new upper bounds for the Bohnenblust–Hille constants (for complex scalars). For bilinear forms, we provide optimal constants of variants of Littlewoodʼs 4/3 inequality (for real scalars) when the exponent 4/3 is replaced by any . We also prove that the optimal constants in real case are always strictly greater than those from the complex case.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 264, Issue 1, 1 January 2013, Pages 326-336