کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4590445 | 1334958 | 2013 | 62 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Invariant distributions and cohomology for geodesic flows and higher cohomology of higher-rank Anosov actions
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
کلمات کلیدی
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We are motivated by a conjecture of A. and S. Katok to study the smooth cohomologies of a family of Weyl chamber flows. The conjecture is a natural generalization of the LivÅ¡ic Theorem to Anosov actions by higher-rank abelian groups; it involves a description of top-degree cohomology and a vanishing statement for lower degrees. Our main result, proved in Part II, verifies the conjecture in lower degrees for our systems, and steps in the “correct” direction in top degree. In Part I we study our “base case”: geodesic flows of finite-volume hyperbolic manifolds. We describe obstructions (invariant distributions) to solving the coboundary equation in unitary representations of the group of orientation-preserving isometries of hyperbolic N-space, and we study Sobolev regularity of solutions. (One byproduct is a smooth LivÅ¡ic Theorem for geodesic flows of hyperbolic manifolds with cusps.) Part I provides the tools needed in Part II for the main theorem.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 265, Issue 6, 15 September 2013, Pages 1002-1063
Journal: Journal of Functional Analysis - Volume 265, Issue 6, 15 September 2013, Pages 1002-1063
نویسندگان
Felipe A. RamÃrez,