کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590612 1334971 2012 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the pointwise convergence of the sequence of partial Fourier sums along lacunary subsequences
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the pointwise convergence of the sequence of partial Fourier sums along lacunary subsequences
چکیده انگلیسی

In his 2006 ICM invited address, Konyagin mentioned the following conjecture: if Snf stands for the n-th partial Fourier sum of f and {nj}j⊂N is a lacunary sequence, then Snjf is a.e. pointwise convergent for any . In this paper we will show that . As a direct consequence we obtain that Snjf→f a.e. for . The (discrete) Walsh model version of this last fact was proved by Do and Lacey but their methods do not (re)cover the (continuous) Fourier setting. The key ingredient for our proof is a tile decomposition of the operator supj|Snj(f)| which depends on both the function f and on the lacunary structure of the frequencies. This tile decomposition, called (f,λ)-lacunary, is directly adapted to the context of our problem, and, combined with a canonical mass decomposition of the tiles, provides the natural environment to which the methods developed by the author in “On the boundedness of the Carleson operator near L1” apply.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 263, Issue 11, 1 December 2012, Pages 3391-3411