کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590616 1334971 2012 72 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fock model and Segal–Bargmann transform for minimal representations of Hermitian Lie groups
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Fock model and Segal–Bargmann transform for minimal representations of Hermitian Lie groups
چکیده انگلیسی

For any Hermitian Lie group G of tube type we construct a Fock model of its minimal representation. The Fock space is defined on the minimal nilpotent KC-orbit X in pC and the L2-inner product involves a K-Bessel function as density. Here K⊆G is a maximal compact subgroup and gC=kC+pC is a complexified Cartan decomposition. In this realization the space of k-finite vectors consists of holomorphic polynomials on X. The reproducing kernel of the Fock space is calculated explicitly in terms of an I-Bessel function. We further find an explicit formula of a generalized Segal–Bargmann transform which intertwines the Schrödinger and Fock model. Its kernel involves the same I-Bessel function. Using the Segal–Bargmann transform we also determine the integral kernel of the unitary inversion operator in the Schrödinger model which is given by a J-Bessel function.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 263, Issue 11, 1 December 2012, Pages 3492-3563