| کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن | 
|---|---|---|---|---|
| 4590641 | 1334974 | 2013 | 29 صفحه PDF | دانلود رایگان | 
عنوان انگلیسی مقاله ISI
												On control of Sobolev norms for some semilinear wave equations with localized data
												
											دانلود مقاله + سفارش ترجمه
													دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
																																												کلمات کلیدی
												
											موضوعات مرتبط
												
													مهندسی و علوم پایه
													ریاضیات
													اعداد جبر و تئوری 
												
											پیش نمایش صفحه اول مقاله
												 
												چکیده انگلیسی
												Consider the semilinear wave equations in dimension 3 with a defocusing and superconformal power-type nonlinearity and with data lying in the Hs×Hs−1Hs×Hs−1 (s<1s<1) closure of smooth functions that are compactly supported inside a ball with fixed radius. We establish new bounds of the Sobolev norms of the solution. In particular, we prove that the HsHs norm of the high frequency component of the solution grows like T∼(1−s)2+T∼(1−s)2+ in a neighborhood of s=1s=1. In order to do that, we perform an analysis in a neighborhood of the cone, using the finite speed of propagation, an almost Shatah–Struwe estimate [17], an almost conservation law and a low–high frequency decomposition [3] and [5].1
ناشر
												Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 265, Issue 11, 1 December 2013, Pages 2724–2752
											Journal: Journal of Functional Analysis - Volume 265, Issue 11, 1 December 2013, Pages 2724–2752
نویسندگان
												Tristan Roy,