کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590672 1334975 2012 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
From the Schrödinger problem to the Monge–Kantorovich problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
From the Schrödinger problem to the Monge–Kantorovich problem
چکیده انگلیسی

The aim of this article is to show that the Monge–Kantorovich problem is the limit, when a fluctuation parameter tends down to zero, of a sequence of entropy minimization problems, the so-called Schrödinger problems. We prove the convergence of the entropic optimal values to the optimal transport cost as the fluctuations decrease to zero, and we also show that the cluster points of the entropic minimizers are optimal transport plans. We investigate the dynamic versions of these problems by considering random paths and describe the connections between the dynamic and static problems. The proofs are essentially based on convex and functional analysis. We also need specific properties of Γ-convergence which we didnʼt find in the literature; these Γ-convergence results which are interesting in their own right are also proved.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 262, Issue 4, 15 February 2012, Pages 1879-1920