کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590739 1334980 2012 42 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Weighted barycentric sets and singular Liouville equations on compact surfaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Weighted barycentric sets and singular Liouville equations on compact surfaces
چکیده انگلیسی

Given a closed surface, we prove a general existence result for some elliptic PDE with exponential nonlinearities and negative Dirac deltas, extending a theory recently obtained for the regular case. This is done by global methods: since the associated Euler functional might be unbounded from below, we define a new model space, generalizing the so-called space of formal barycenters and characterizing (up to homotopy equivalence) its low sublevels. As a result, the analytic problem is reduced to a topological one concerning the contractibility of this model space. To this aim, we prove a new functional inequality in the spirit of Chen and Li (1991) [11], and then employ a min–max scheme based on conical construction, jointly with the blow-up analysis in Bartolucci and Montefusco (2007) [4], (after Bartolucci and Tarantello, 2002; Brezis and Merle, 1991 [5,7]). This study is motivated by abelian Chern–Simons theory in self-dual regime, or from the problem of prescribing the Gaussian curvature with conical singularities (generalizing a problem raised in Kazdan and Warner, 1974 [24]).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 262, Issue 2, 15 January 2012, Pages 409-450