کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590744 1334980 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Subnormality for arbitrary powers of 2-variable weighted shifts whose restrictions to a large invariant subspace are tensor products
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Subnormality for arbitrary powers of 2-variable weighted shifts whose restrictions to a large invariant subspace are tensor products
چکیده انگلیسی

The Lifting Problem for Commuting Subnormals (LPCS) asks for necessary and sufficient conditions for a pair of subnormal operators on Hilbert space to admit commuting normal extensions. We study LPCS within the class of commuting 2-variable weighted shifts T≡(T1,T2) with subnormal components T1 and T2, acting on the Hilbert space with canonical orthonormal basis {e(k1,k2)}k1,k2⩾0. The core of a commuting 2-variable weighted shift T, c(T), is the restriction of T to the invariant subspace generated by all vectors e(k1,k2) with k1,k2⩾1; we say that c(T) is of tensor form if it is unitarily equivalent to a shift of the form (I⊗Wα,Wβ⊗I), where Wα and Wβ are subnormal unilateral weighted shifts. Given a 2-variable weighted shift T whose core is of tensor form, we prove that LPCS is solvable for T if and only if LPCS is solvable for any power (m,n⩾1).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 262, Issue 2, 15 January 2012, Pages 569-583