کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4590746 | 1334980 | 2012 | 37 صفحه PDF | دانلود رایگان |

We prove Lp-uniqueness of Dirichlet operators for Gibbs measures on the path space C(R,Rd) associated with exponential type interactions in infinite volume by extending an SPDE approach presented in previous work by the last two named authors. We also give an SPDE characterization of the corresponding dynamics. In particular, for the first time, we prove existence and uniqueness of a strong solution for the SPDE, though the self-interaction potential is not assumed to be differentiable, hence the drift is possibly discontinuous. As examples, to which our results apply, we mention the stochastic quantization of P(ϕ)1-, -, and trigonometric quantum fields in infinite volume. In particular, our results imply essential self-adjointness of the generator of the stochastic dynamics for these models. Finally, as an application of the strong uniqueness result for the SPDE, we prove some functional inequalities for diffusion semigroups generated by the above Dirichlet operators.
Journal: Journal of Functional Analysis - Volume 262, Issue 2, 15 January 2012, Pages 602-638