کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590784 1334983 2013 59 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
The Dirichlet problem for higher order equations in composition form
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
The Dirichlet problem for higher order equations in composition form
چکیده انگلیسی

The present paper commences the study of higher order differential equations in composition form. Specifically, we consider the equation , where A and B are elliptic matrices with complex-valued bounded measurable coefficients and a is an accretive function. Elliptic operators of this type naturally arise, for instance, via a pull-back of the bilaplacian Δ2 from a Lipschitz domain to the upper half-space. More generally, this form is preserved under a Lipschitz change of variables, contrary to the case of divergence-form fourth-order differential equations. We establish well-posedness of the Dirichlet problem for the equation Lu=0, with boundary data in L2, and with optimal estimates in terms of nontangential maximal functions and square functions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 265, Issue 1, 1 July 2013, Pages 49-107