کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590811 1334986 2011 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem
چکیده انگلیسی

In this paper, we find upper bounds for the eigenvalues of the Laplacian in the conformal class of a compact Riemannian manifold (M,g). These upper bounds depend only on the dimension and a conformal invariant that we call “min-conformal volume”. Asymptotically, these bounds are consistent with the Weyl law and improve previous results by Korevaar and Yang and Yau. The proof relies on the construction of a suitable family of disjoint domains providing supports for a family of test functions. This method is interesting for itself and powerful. As a further application of the method we obtain an upper bound for the eigenvalues of the Steklov problem in a domain with C1 boundary in a complete Riemannian manifold in terms of the isoperimetric ratio of the domain and the conformal invariant that we introduce.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 261, Issue 12, 15 December 2011, Pages 3419-3436