کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590873 1334991 2011 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Conditional Fredholm determinant for the S-periodic orbits in Hamiltonian systems
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Conditional Fredholm determinant for the S-periodic orbits in Hamiltonian systems
چکیده انگلیسی

For S being a symplectic orthogonal matrix on R2n, the S-periodic orbits in Hamiltonian systems are a solution which satisfies x(0)=Sx(T) for some period T. This paper is devoted to establishing the theory of conditional Fredholm determinant in studying the S-periodic orbits in Hamiltonian systems. First, we study the property of the conditional Fredholm determinant, such as the Fréchet differentiability, the splittingness for the cyclic type symmetric solutions. Also, we generalize the Hill formula originally gotten by Hill and Poincaré. More precisely, let M be the monodromy matrix of the S-periodic orbits, then we get the formula relating the characteristic polynomial of the matrix SM and the conditional Fredhom determinant. Moreover, we study the relation of the conditional Fredholm determinant and the relative Morse index. Applications to the problem of linear stability for the S-periodic orbits are given.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 261, Issue 11, 1 December 2011, Pages 3247-3278