کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4590977 1334998 2012 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Bifurcation surfaces stemming from the Fučik spectrum
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Bifurcation surfaces stemming from the Fučik spectrum
چکیده انگلیسی

Let Ω⊂RNΩ⊂RN be a bounded domain with smooth boundary ∂Ω   and g:Ω¯×R→R be a nonlinear function. We prove existence of two-dimensional bifurcation surfaces for the elliptic boundary value problem−Δu=au−+bu++g(x,u)in Ω,u|∂Ω=0, where u−=min{0,u}u−=min{0,u}, u+=max{0,u}u+=max{0,u}, and (a,b)∈R2(a,b)∈R2 is a pair of parameters. We show that these two-dimensional bifurcation surfaces stem from the Fučik spectrum of −Δ. The main difficulty in doing that comes from non-smoothness of the operators u↦u±u↦u±. In order to overcome this difficulty, a variant implicit function theorem and an abstract two-dimensional bifurcation theorem are proved. These two theorems do not require smoothness of operators and the abstract two-dimensional bifurcation theorem can be regarded as an extension of the well-known Crandall–Rabinowitz bifurcation theorem, and therefore are of interest for their own sake.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 263, Issue 12, 15 December 2012, Pages 4059–4080
نویسندگان
, , ,