کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591054 1335004 2012 52 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Boundary singularities of solutions to elliptic viscous Hamilton–Jacobi equations
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Boundary singularities of solutions to elliptic viscous Hamilton–Jacobi equations
چکیده انگلیسی

We study the boundary value problem with measures for (E1) −Δu+g(|∇u|)=0 in a bounded domain Ω in RN, satisfying (E2) u=μ on ∂Ω and prove that if is nondecreasing (E1)–(E2) can be solved with any positive bounded measure. When g(r)⩾rq with q>1 we prove that any positive function satisfying (E1) admits a boundary trace which is an outer regular Borel measure, not necessarily bounded. When g(r)=rq with we prove the existence of a positive solution with a general outer regular Borel measure ν≢∞ as boundary trace and characterize the boundary isolated singularities of positive solutions. When g(r)=rq with qc⩽q<2 we prove that a necessary condition for solvability is that μ must be absolutely continuous with respect to the Bessel capacity . We also characterize boundary removable sets for moderate and sigma-moderate solutions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 263, Issue 6, 15 September 2012, Pages 1487-1538