کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591127 1335010 2012 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On solid ergodicity for Gaussian actions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On solid ergodicity for Gaussian actions
چکیده انگلیسی

We investigate Gaussian actions through the study of their crossed-product von Neumann algebra. The motivational result is Chifan and Ioanaʼs ergodic decomposition theorem for Bernoulli actions (Chifan and Ioana, 2010 [4]) that we generalize to Gaussian actions (Theorem A). We also give general structural results (Theorems 3.4 and 3.8) that allow us to get a more accurate result at the level of von Neumann algebras. More precisely, for a large class of Gaussian actions Γ↷X, we show that any subfactor N of L∞(X)⋊Γ containing L∞(X) is either hyperfinite or is non-Gamma and prime. At the end of the article, we show a similar result for Bogoliubov actions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 263, Issue 4, 15 August 2012, Pages 1040-1063