کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4591157 | 1335012 | 2011 | 29 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Sums of Laplace eigenvalues—rotationally symmetric maximizers in the plane
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
The sum of the first n⩾1 eigenvalues of the Laplacian is shown to be maximal among triangles for the equilateral triangle, maximal among parallelograms for the square, and maximal among ellipses for the disk, provided the ratio 3(area)/(moment of inertia) for the domain is fixed. This result holds for both Dirichlet and Neumann eigenvalues, and similar conclusions are derived for Robin boundary conditions and Schrödinger eigenvalues of potentials that grow at infinity. A key ingredient in the method is the tight frame property of the roots of unity. For general convex plane domains, the disk is conjectured to maximize sums of Neumann eigenvalues.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 260, Issue 6, 15 March 2011, Pages 1795-1823
Journal: Journal of Functional Analysis - Volume 260, Issue 6, 15 March 2011, Pages 1795-1823