کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591256 1335019 2009 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Algebra homomorphisms defined via convoluted semigroups and cosine functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Algebra homomorphisms defined via convoluted semigroups and cosine functions
چکیده انگلیسی

Transform methods are used to establish algebra homomorphisms related to convoluted semigroups and convoluted cosine functions. Such families are now basic in the study of the abstract Cauchy problem. The framework they provide is flexible enough to encompass most of the concepts used up to now to treat Cauchy problems of the first- and second-order in general Banach spaces. Starting with the study of the classical Laplace convolution and a cosine convolution, along with associated dual transforms, natural algebra homomorphisms are introduced which capture the convoluted semigroup and cosine function properties. These correspond to extensions of the Cauchy functional equation for semigroups and the abstract d'Alembert equation for the case of cosine operator functions. The algebra homomorphisms obtained provide a way to prove Hille–Yosida type generation theorems for the operator families under consideration.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 257, Issue 11, 1 December 2009, Pages 3454-3487