کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591274 1335020 2012 15 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Analytic characterizations of Mazurʼs intersection property via convex functions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Analytic characterizations of Mazurʼs intersection property via convex functions
چکیده انگلیسی

In this paper, we present analytical characterizations of Mazurʼs intersection property (MIP), the CIP and the MIP⁎ via a specific class of convex functions and their conjugates. More precisely, let X   be a Banach space and X⁎X⁎ be its dual. Then X has the MIP if and only if for every extended real-valued lower semi-continuous convex function f defined on X with bounded domain, f   is the supremum of all functions g⩽fg⩽f of the form:g(x)=r0−R2−‖x−x0‖2,if ‖x−x0‖⩽R;=+∞,otherwise, for some x0∈X(X⁎)x0∈X(X⁎) and r0∈Rr0∈R, R>0R>0. And X has the CIP if and only if for every extended real-valued lower semi-continuous convex function on X   with relatively compact domain, f⁎f⁎ is the infimum of all functions h⩾f⁎h⩾f⁎ which are of the form:h(x⁎)=R01+‖x⁎‖2+〈x⁎,x0〉+r0,for all x⁎∈X⁎.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 262, Issue 11, 1 June 2012, Pages 4731–4745
نویسندگان
, ,