کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4591434 | 1335029 | 2009 | 23 صفحه PDF | دانلود رایگان |

We introduce and study rough (approximate) lower curvature bounds for discrete spaces and for graphs. This notion agrees with the one introduced in [J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), in press] and [K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006) 65–131], in the sense that the metric measure space which is approximated by a sequence of discrete spaces with rough curvature ⩾K will have curvature ⩾K in the sense of [J. Lott, C. Villani, Ricci curvature for metric-measure spaces via optimal transport, Ann. of Math. 169 (2009), in press; K.T. Sturm, On the geometry of metric measure spaces. I, Acta Math. 196 (2006) 65–131]. Moreover, in the converse direction, discretizations of metric measure spaces with curvature ⩾K will have rough curvature ⩾K. We apply our results to concrete examples of homogeneous planar graphs.
Journal: Journal of Functional Analysis - Volume 256, Issue 9, 1 May 2009, Pages 2944-2966