کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591506 1335033 2011 24 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Algebraic properties and the finite rank problem for Toeplitz operators on the Segal–Bargmann space
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Algebraic properties and the finite rank problem for Toeplitz operators on the Segal–Bargmann space
چکیده انگلیسی

We study three different problems in the area of Toeplitz operators on the Segal–Bargmann space in Cn. Extending results obtained previously by the first author and Y.L. Lee, and by the second author, we first determine the commutant of a given Toeplitz operator with a radial symbol belonging to the class Sym>0(Cn) of symbols having certain growth at infinity. We then provide explicit examples of zero-products of non-trivial Toeplitz operators. These examples show the essential difference between Toeplitz operators on the Segal–Bargmann space and on the Bergman space over the unit ball. Finally, we discuss the “finite rank problem”. We show that there are no non-trivial rank one Toeplitz operators Tf for f∈Sym>0(Cn). In all these problems, the growth at infinity of the symbols plays a crucial role.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 261, Issue 9, 1 November 2011, Pages 2617-2640