کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591557 1335037 2009 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
A C∗-algebra of geometric operators on self-similar CW-complexes. Novikov–Shubin and L2-Betti numbers
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
A C∗-algebra of geometric operators on self-similar CW-complexes. Novikov–Shubin and L2-Betti numbers
چکیده انگلیسی

A class of CW-complexes, called self-similar complexes, is introduced, together with C∗-algebras Aj of operators, endowed with a finite trace, acting on square-summable cellular j-chains. Since the Laplacian Δj belongs to Aj, L2-Betti numbers and Novikov–Shubin numbers are defined for such complexes in terms of the trace. In particular a relation involving the Euler–Poincaré characteristic is proved. L2-Betti and Novikov–Shubin numbers are computed for some self-similar complexes arising from self-similar fractals.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 256, Issue 3, 1 February 2009, Pages 603-634