کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4591562 | 1335037 | 2009 | 30 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
Global branches of non-radially symmetric solutions to a semilinear Neumann problem in a disk
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
Let D⊂R2D⊂R2 be a disk, and let f∈C3f∈C3. We assume that there is a∈Ra∈R such that f(a)=0f(a)=0 and f′(a)>0f′(a)>0. In this article, we are concerned with the Neumann problemΔu+λf(u)=0in D,∂νu=0on ∂D. We show the following: There are unbounded continuums consisting of non-radially symmetric solutions emanating from the second and third eigenvalues. If f(u)=−u+u|u|p−1f(u)=−u+u|u|p−1 (a=1a=1) or if f is of bistable type, then the unbounded branches emanating from non-principal eigenvalues are unbounded in the positive direction of λ . The branch emanating from the second eigenvalue is unique near the bifurcation point up to rotation. The main tool of this article is the zero level set (the nodal curve) of uθuθ and uxux.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 256, Issue 3, 1 February 2009, Pages 747–776
Journal: Journal of Functional Analysis - Volume 256, Issue 3, 1 February 2009, Pages 747–776
نویسندگان
Yasuhito Miyamoto,