کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4591568 | 1335037 | 2009 | 18 صفحه PDF | دانلود رایگان |

Let A⊂Rd, d⩾2, be a compact convex set and let be a probability measure on A equivalent to the restriction of Lebesgue measure. Let be a probability measure on equivalent to the restriction of Lebesgue measure. We prove that there exists a mapping T such that ν=μ○T−1 and T=φ⋅n, where is a continuous potential with convex sub-level sets and n is the Gauss map of the corresponding level sets of φ. Moreover, T is invertible and essentially unique. Our proof employs the optimal transportation techniques. We show that in the case of smooth φ the level sets of φ are governed by the Gauss curvature flow , where K is the Gauss curvature. As a by-product one can reprove the existence of weak solutions to the classical Gauss curvature flow starting from a convex hypersurface.
Journal: Journal of Functional Analysis - Volume 256, Issue 3, 1 February 2009, Pages 940-957