کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591648 1335043 2008 27 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rademacher averages on noncommutative symmetric spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Rademacher averages on noncommutative symmetric spaces
چکیده انگلیسی

Let E be a separable (or the dual of a separable) symmetric function space, let M be a semifinite von Neumann algebra and let E(M) be the associated noncommutative function space. Let (εk)k⩾1 be a Rademacher sequence, on some probability space Ω. For finite sequences (xk)k⩾1 of E(M), we consider the Rademacher averages ∑kεk⊗xk as elements of the noncommutative function space and study estimates for their norms ‖∑kεk⊗xk‖E calculated in that space. We establish general Khintchine type inequalities in this context. Then we show that if E is 2-concave, ‖∑kεk⊗xk‖E is equivalent to the infimum of over all yk, zk in E(M) such that xk=yk+zk for any k⩾1. Dual estimates are given when E is 2-convex and has a nontrivial upper Boyd index. In this case, ‖∑kεk⊗xk‖E is equivalent to . We also study Rademacher averages ∑i,jεi⊗εj⊗xij for doubly indexed families (xij)i,j of E(M).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 255, Issue 12, 15 December 2008, Pages 3329-3355