کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4591713 | 1335048 | 2011 | 25 صفحه PDF | دانلود رایگان |

This paper systematically studies finite rank dimension groups, as well as finite-dimensional ordered real vector spaces with Riesz interpolation. We provide an explicit description and classification of finite rank dimension groups, in the following sense. We show that for each n, there are (up to isomorphism) finitely many ordered real vector spaces of dimension n that have Riesz interpolation, and we give an explicit model for each of them in terms of combinatorial data. We show that every finite rank dimension group can be realized as a subgroup of a finite-dimensional ordered real vector space with Riesz interpolation via a canonical embedding. We then characterize which of the subgroups of a finite-dimensional ordered real vector space have Riesz interpolation (and are therefore dimension groups).
Journal: Journal of Functional Analysis - Volume 260, Issue 11, 1 June 2011, Pages 3404-3428