کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591764 1335052 2011 26 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the unitary equivalence of absolutely continuous parts of self-adjoint extensions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the unitary equivalence of absolutely continuous parts of self-adjoint extensions
چکیده انگلیسی

The classical Weyl–von Neumann theorem states that for any self-adjoint operator A0 in a separable Hilbert space H there exists a (non-unique) Hilbert–Schmidt operator C=C⁎ such that the perturbed operator A0+C has purely point spectrum. We are interesting whether this result remains valid for non-additive perturbations by considering the set ExtA of self-adjoint extensions of a given densely defined symmetric operator A in H and some fixed . We show that the ac-parts and of and A0 are unitarily equivalent provided that the resolvent difference is compact and the Weyl function M(⋅) of the pair {A,A0} admits weak boundary limits M(t):=w-limy→+0M(t+iy) for a.e. t∈R. This result generalizes the classical Kato–Rosenblum theorem. Moreover, it demonstrates that for such pairs {A,A0} the Weyl–von Neumann theorem is in general not true in the class ExtA.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 260, Issue 3, 15 February 2011, Pages 613-638