کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591820 1335055 2011 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Improved bounds in the metric cotype inequality for Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Improved bounds in the metric cotype inequality for Banach spaces
چکیده انگلیسی

It is shown that if (X,‖⋅‖X)(X,‖⋅‖X) is a Banach space with Rademacher cotype q then for every integer n   there exists an even integer m≲n1+1q such that for every f:Zmn→X we haveequation(1)∑j=1nEx[‖f(x+m2ej)−f(x)‖Xq]≲mqEε,x[‖f(x+ε)−f(x)‖Xq], where the expectations are with respect to uniformly chosen x∈Zmn and ε∈n{−1,0,1}ε∈{−1,0,1}n, and all the implied constants may depend only on q and the Rademacher cotype q constant of X  . This improves the bound of m≲n2+1q from Mendel and Naor (2008) [13]. The proof of (1) is based on a “smoothing and approximation” procedure which simplifies the proof of the metric characterization of Rademacher cotype of Mendel and Naor (2008) [13]. We also show that any such “smoothing and approximation” approach to metric cotype inequalities must require m≳n12+1q.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 260, Issue 1, 1 January 2011, Pages 164–194
نویسندگان
, , ,