کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591838 1335056 2007 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
BMO and H1 for the Ornstein–Uhlenbeck operator
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
BMO and H1 for the Ornstein–Uhlenbeck operator
چکیده انگلیسی

In this paper we develop a theory of singular integral operators acting on function spaces over the measured metric space (Rd,ρ,γ), where ρ denotes the Euclidean distance and γ the Gauss measure. Our theory plays for the Ornstein–Uhlenbeck operator the same rôle that the classical Calderòn–Zygmund theory plays for the Laplacian on (Rd,ρ,λ), where λ is the Lebesgue measure. Our method requires the introduction of two new function spaces: the space BMO(γ) of functions with “bounded mean oscillation” and its predual, the atomic Hardy space H1(γ). We show that if p is in (2,∞), then Lp(γ) is an intermediate space between L2(γ) and BMO(γ), and that an inequality of John–Nirenberg type holds for functions in BMO(γ). Then we show that if M is a bounded operator on L2(γ) and the Schwartz kernels of M and of its adjoint satisfy a “local integral condition of Hörmander type,” then M extends to a bounded operator from H1(γ) to L1(γ), from L∞(γ) to BMO(γ) and on Lp(γ) for all p in (1,∞). As an application, we show that certain singular integral operators related to the Ornstein–Uhlenbeck operator, which are unbounded on L1(γ) and on L∞(γ), turn out to be bounded from H1(γ) to L1(γ) and from L∞(γ) to BMO(γ).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 252, Issue 1, 1 November 2007, Pages 278-313