کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591861 1335058 2008 14 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Norms and spectral radii of linear fractional composition operators on the ball
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Norms and spectral radii of linear fractional composition operators on the ball
چکیده انگلیسی

We give a new proof that every linear fractional map of the unit ball induces a bounded composition operator on the standard scale of Hilbert function spaces on the ball, and obtain new norm bounds analogous to the standard one-variable estimates. We also show that Cowen's one-variable spectral radius formula extends to these operators. The key observation underlying these results is that every linear fractional map of the ball belongs to the Schur–Agler class.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 254, Issue 9, 1 May 2008, Pages 2387-2400