کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4591874 1335059 2009 21 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the Fučík spectrum of the Laplacian on a torus
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the Fučík spectrum of the Laplacian on a torus
چکیده انگلیسی

We study the Fučík spectrum of the Laplacian on a two-dimensional torus T2. Exploiting the invariance properties of the domain T2 with respect to translations we obtain a good description of large parts of the spectrum. In particular, for each eigenvalue of the Laplacian we will find an explicit global curve in the Fučík spectrum which passes through this eigenvalue; these curves are ordered, and we will show that their asymptotic limits are positive. On the other hand, using a topological index based on the mentioned group invariance, we will obtain a variational characterization of global curves in the Fučík spectrum; also these curves emanate from the eigenvalues of the Laplacian, and we will show that they tend asymptotically to zero. Thus, we infer that the variational and the explicit curves cannot coincide globally, and that in fact many curve crossings must occur. We will give a bifurcation result which partially explains these phenomena.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 256, Issue 5, 1 March 2009, Pages 1432-1452