کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592044 1335070 2010 18 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantitative unique continuation for the semilinear heat equation in a convex domain
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Quantitative unique continuation for the semilinear heat equation in a convex domain
چکیده انگلیسی

In this paper, we study certain unique continuation properties for solutions of the semilinear heat equation ∂tu−△u=g(u), with the homogeneous Dirichlet boundary condition, over Ω×(0,T∗). Ω is a bounded, convex open subset of Rd, with a smooth boundary for the subset. The function g:R→R satisfies certain conditions. We establish some observation estimates for (u−v), where u and v are two solutions to the above-mentioned equation. The observation is made over ω×{T}, where ω is any non-empty open subset of Ω, and T is a positive number such that both u and v exist on the interval [0,T]. At least two results can be derived from these estimates: (i) if ‖(u−v)(⋅,T)‖L2(ω)=δ, then ‖(u−v)(⋅,T)‖L2(Ω)⩽Cδα where constants C>0 and α∈(0,1) can be independent of u and v in certain cases; (ii) if two solutions of the above equation hold the same value over ω×{T}, then they coincide over Ω×[0,Tm). Tm indicates the maximum number such that these two solutions exist on [0,Tm).

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 259, Issue 5, 1 September 2010, Pages 1230-1247