کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592087 1335073 2007 32 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sub-elliptic global high order Poincaré inequalities in stratified Lie groups and applications
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Sub-elliptic global high order Poincaré inequalities in stratified Lie groups and applications
چکیده انگلیسی

Sharp Poincaré inequalities on balls or chain type bounded domains have been extensively studied both in classical Euclidean space and Carnot–Carathéodory spaces associated with sub-elliptic vector fields (e.g., vector fields satisfying Hörmander's condition). In this paper, we investigate the validity of sharp global Poincaré inequalities of both first order and higher order on the entire nilpotent stratified Lie groups or on unbounded extension domains in such groups. We will show that simultaneous sharp global Poincaré inequalities also hold and weighted versions of such results remain to be true. More precisely, let G be a nilpotent stratified Lie group and f be in the localized non-isotropic Sobolev space , where 1⩽p

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 249, Issue 2, 15 August 2007, Pages 393-424