کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592097 1335074 2008 23 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Ihara's zeta function for periodic graphs and its approximation in the amenable case
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Ihara's zeta function for periodic graphs and its approximation in the amenable case
چکیده انگلیسی

In this paper, we give a more direct proof of the results by Clair and Mokhtari-Sharghi [B. Clair, S. Mokhtari-Sharghi, Zeta functions of discrete groups acting on trees, J. Algebra 237 (2001) 591–620] on the zeta functions of periodic graphs. In particular, using appropriate operator-algebraic techniques, we establish a determinant formula in this context and examine its consequences for the Ihara zeta function. Moreover, we answer in the affirmative one of the questions raised in [R.I. Grigorchuk, A. Żuk, The Ihara zeta function of infinite graphs, the KNS spectral measure and integrable maps, in: V.A. Kaimanovich, et al. (Eds.), Proc. Workshop, Random Walks and Geometry, Vienna, 2001, de Gruyter, Berlin, 2004, pp. 141–180] by Grigorchuk and Żuk. Accordingly, we show that the zeta function of a periodic graph with an amenable group action is the limit of the zeta functions of a suitable sequence of finite subgraphs.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 255, Issue 6, 15 September 2008, Pages 1339-1361