کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592108 1335075 2009 57 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Asymptotic stability of ground states in 3D nonlinear Schrödinger equation including subcritical cases
چکیده انگلیسی

We consider a class of nonlinear Schrödinger equation in three space dimensions with an attractive potential. The nonlinearity is local but rather general encompassing for the first time both subcritical and supercritical (in L2) nonlinearities. We study the asymptotic stability of the nonlinear bound states, i.e. periodic in time localized in space solutions. Our result shows that all solutions with small initial data, converge to a nonlinear bound state. Therefore, the nonlinear bound states are asymptotically stable. The proof hinges on dispersive estimates that we obtain for the time dependent, Hamiltonian, linearized dynamics around a careful chosen one parameter family of bound states that “shadows” the nonlinear evolution of the system. Due to the generality of the methods we develop we expect them to extend to the case of perturbations of large bound states and to other nonlinear dispersive wave type equations.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 257, Issue 12, 15 December 2009, Pages 3691-3747