کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592377 1335095 2006 52 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Toeplitz operators and Hamiltonian torus actions
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Toeplitz operators and Hamiltonian torus actions
چکیده انگلیسی

This paper is devoted to semi-classical aspects of symplectic reduction. Consider a compact prequantizable Kähler manifold M with a Hamiltonian torus action. In the seminal paper [V. Guillemin, S. Sternberg, Geometric quantization and multiplicities of group representations, Invent. Math. 67 (3) (1982) 515–538], Guillemin and Sternberg introduced an isomorphism between the invariant part of the quantum space associated to M and the quantum space associated to the symplectic quotient of M, provided this quotient is non-singular. We prove that this isomorphism is a Fourier integral operator and that the Toeplitz operators of M descend to Toeplitz operators of the reduced phase space. We also extend these results to the case where the symplectic quotient is an orbifold and estimate the spectral density of a reduced Toeplitz operator, a result related to the Riemann–Roch–Kawasaki theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 236, Issue 1, 1 July 2006, Pages 299-350