کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592433 1335100 2009 93 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Quantum scattering at low energies
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Quantum scattering at low energies
چکیده انگلیسی

For a class of negative slowly decaying potentials, including V(x):=−γ|x|−μ with 0<μ<2, we study the quantum mechanical scattering theory in the low-energy regime. Using appropriate modifiers of the Isozaki–Kitada type we show that scattering theory is well behaved on the whole continuous spectrum of the Hamiltonian, including the energy 0. We show that the modified scattering matrices S(λ) are well-defined and strongly continuous down to the zero energy threshold. Similarly, we prove that the modified wave matrices and generalized eigenfunctions are norm continuous down to the zero energy if we use appropriate weighted spaces. These results are used to derive (oscillatory) asymptotics of the standard short-range and Dollard type S-matrices for the subclasses of potentials where both kinds of S-matrices are defined. For potentials whose leading part is −γ|x|−μ we show that the location of singularities of the kernel of S(λ) experiences an abrupt change from passing from positive energies λ to the limiting energy λ=0. This change corresponds to the behaviour of the classical orbits. Under stronger conditions one can extract the leading term of the asymptotics of the kernel of S(λ) at its singularities.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 257, Issue 6, 15 September 2009, Pages 1828-1920