کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4592440 | 1335101 | 2009 | 17 صفحه PDF | دانلود رایگان |

Using the variational method, it is shown that the set of all strong peak functions in a closed algebra A of Cb(K) is dense if and only if the set of all strong peak points is a norming subset of A. As a corollary we can induce the denseness of strong peak functions on other certain spaces. In case that a set of uniformly strongly exposed points of a Banach space X is a norming subset of , then the set of all strongly norm attaining elements in is dense. In particular, the set of all points at which the norm of is Fréchet differentiable is a dense Gδ subset. In the last part, using Reisner's graph-theoretic approach, we construct some strongly norm attaining polynomials on a CL-space with an absolute norm. Then we show that for a finite dimensional complex Banach space X with an absolute norm, its polynomial numerical indices are one if and only if X is isometric to . Moreover, we give a characterization of the set of all complex extreme points of the unit ball of a CL-space with an absolute norm.
Journal: Journal of Functional Analysis - Volume 257, Issue 4, 15 August 2009, Pages 931-947