کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4592445 | 1335101 | 2009 | 39 صفحه PDF | دانلود رایگان |

We consider, in a smooth bounded multiply connected domain D⊂R2, the Ginzburg–Landau energy subject to prescribed degree conditions on each component of ∂D. In general, minimal energy maps do not exist [L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004]. When D has a single hole, Berlyand and Rybalko [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html] proved that for small ε local minimizers do exist. We extend the result in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]: Eε(u) has, in domains D with 2,3,… holes and for small ε, local minimizers. Our approach is very similar to the one in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]; the main difference stems in the construction of test functions with energy control.
Journal: Journal of Functional Analysis - Volume 257, Issue 4, 15 August 2009, Pages 1053-1091