کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592445 1335101 2009 39 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Local minimizers of the Ginzburg–Landau functional with prescribed degrees
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Local minimizers of the Ginzburg–Landau functional with prescribed degrees
چکیده انگلیسی

We consider, in a smooth bounded multiply connected domain D⊂R2, the Ginzburg–Landau energy subject to prescribed degree conditions on each component of ∂D. In general, minimal energy maps do not exist [L. Berlyand, P. Mironescu, Ginzburg–Landau minimizers in perforated domains with prescribed degrees, preprint, 2004]. When D has a single hole, Berlyand and Rybalko [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html] proved that for small ε local minimizers do exist. We extend the result in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]: Eε(u) has, in domains D with 2,3,… holes and for small ε, local minimizers. Our approach is very similar to the one in [L. Berlyand, V. Rybalko, Solution with vortices of a semi-stiff boundary value problem for the Ginzburg–Landau equation, J. Eur. Math. Soc. (JEMS), in press, 2008, http://www.math.psu.edu/berlyand/publications/publications.html]; the main difference stems in the construction of test functions with energy control.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 257, Issue 4, 15 August 2009, Pages 1053-1091