کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592472 1335104 2009 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Well-posedness of the spatially homogeneous Landau equation for soft potentials
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Well-posedness of the spatially homogeneous Landau equation for soft potentials
چکیده انگلیسی

We consider the spatially homogeneous Landau equation of kinetic theory, and provide a differential inequality for the Wasserstein distance with quadratic cost between two solutions. We deduce some well-posedness results. The main difficulty is that this equation presents a singularity for small relative velocities. Our uniqueness result is the first one in the important case of soft potentials. Furthermore, it is almost optimal for a class of moderately soft potentials, that is for a moderate singularity. Indeed, in such a case, our result applies for initial conditions with finite mass, energy, and entropy. For the other moderately soft potentials, we assume additionally some moment conditions on the initial data. For very soft potentials, we obtain only a local (in time) well-posedness result, under some integrability conditions. Our proof is probabilistic, and uses a stochastic version of the Landau equation, in the spirit of Tanaka [H. Tanaka, Probabilistic treatment of the Boltzmann equation of Maxwellian molecules, Z. Wahrsch. Verw. Geb. 46 (1) (1978–1979) 67–105].

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 256, Issue 8, 15 April 2009, Pages 2542-2560