کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592544 1335110 2007 36 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Approximation by smooth functions with no critical points on separable Banach spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Approximation by smooth functions with no critical points on separable Banach spaces
چکیده انگلیسی

We characterize the class of separable Banach spaces X such that for every continuous function and for every continuous function there exists a C1 smooth function for which |f(x)−g(x)|⩽ε(x) and g′(x)≠0 for all x∈X (that is, g has no critical points), as those infinite-dimensional Banach spaces X with separable dual X∗. We also state sufficient conditions on a separable Banach space so that the function g can be taken to be of class Cp, for p=1,2,…,+∞. In particular, we obtain the optimal order of smoothness of the approximating functions with no critical points on the classical spaces ℓp(N) and Lp(Rn). Some important consequences of the above results are (1) the existence of a non-linear Hahn–Banach theorem and the smooth approximation of closed sets, on the classes of spaces considered above; and (2) versions of all these results for a wide class of infinite-dimensional Banach manifolds.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 242, Issue 1, 1 January 2007, Pages 1-36