کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592579 1630610 2006 53 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Parameter dependence of solutions of differential equations on spaces of distributions and the splitting of short exact sequences
چکیده انگلیسی

We show that a linear partial differential operator with constant coefficients P(D)P(D) is surjective on the space of E  -valued (ultra-)distributions over an arbitrary convex set if E′E′ is a nuclear Fréchet space with property (DN). In particular, this holds if E   is isomorphic to the space of tempered distributions S′S′ or to the space of germs of holomorphic functions over a one-point set H({0})H({0}). This result has an interpretation in terms of solving the scalar equation P(D)u=fP(D)u=f such that the solution u depends on parameter whenever the right-hand side f   also depends on the parameter in the same way. A suitable analogue for surjective convolution operators over RdRd is obtained as well. To get the above results we develop a splitting theory for short exact sequences of the form0⟶X⟶Y⟶Z⟶0,0⟶X⟶Y⟶Z⟶0,where Z is a Fréchet Schwartz space and X, Y   are PLS-spaces, like the spaces of distributions or real analytic functions or their subspaces. In particular, an extension of the (DN)-(Ω)(DN)-(Ω) splitting theorem of Vogt and Wagner is obtained.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 230, Issue 2, 15 January 2006, Pages 329–381
نویسندگان
, ,