کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4592633 | 1335119 | 2009 | 41 صفحه PDF | دانلود رایگان |

The paper develops construction procedures for tight framelets and wavelets using matrix mask functions in the setting of a generalized multiresolution analysis (GMRA). We show the existence of a scaling vector of a GMRA such that its first component exhausts the spectrum of the core space near the origin. The corresponding low-pass matrix mask has an especially advantageous form enabling an effective reconstruction procedure of the original scaling vector. We also prove a generalization of the Unitary Extension Principle for an infinite number of generators. This results in the construction scheme for tight framelets using low-pass and high-pass matrix masks generalizing the classical MRA constructions. We prove that our scheme is flexible enough to reconstruct all possible orthonormal wavelets. As an illustration we exhibit a pathwise connected class of non-MSF non-MRA wavelets sharing the same wavelet dimension function.
Journal: Journal of Functional Analysis - Volume 256, Issue 4, 15 February 2009, Pages 1065-1105