کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592640 1335119 2009 30 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Fokker–Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Fokker–Planck equations and maximal dissipativity for Kolmogorov operators with time dependent singular drifts in Hilbert spaces
چکیده انگلیسی

We consider a Kolmogorov operator L0 in a Hilbert space H, related to a stochastic PDE with a time-dependent singular quasi-dissipative drift , defined on a suitable space of regular functions. We show that L0 is essentially m-dissipative in the space Lp([0,T]×H;ν), p⩾1, where and the family (νt)t∈[0,T] is a solution of the Fokker–Planck equation given by L0. As a consequence, the closure of L0 generates a Markov C0-semigroup. We also prove uniqueness of solutions to the Fokker–Planck equation for singular drifts F. Applications to reaction–diffusion equations with time-dependent reaction term are presented. This result is a generalization of the finite-dimensional case considered in [V. Bogachev, G. Da Prato, M. Röckner, Existence of solutions to weak parabolic equations for measures, Proc. London Math. Soc. (3) 88 (2004) 753–774], [V. Bogachev, G. Da Prato, M. Röckner, On parabolic equations for measures, Comm. Partial Differential Equations 33 (3) (2008) 397–418], and [V. Bogachev, G. Da Prato, M. Röckner, W. Stannat, Uniqueness of solutions to weak parabolic equations for measures, Bull. London Math. Soc. 39 (2007) 631–640] to infinite dimensions.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 256, Issue 4, 15 February 2009, Pages 1269-1298