کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592647 1335120 2008 34 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On gradient bounds for the heat kernel on the Heisenberg group
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On gradient bounds for the heat kernel on the Heisenberg group
چکیده انگلیسی

It is known that the couple formed by the two-dimensional Brownian motion and its Lévy area leads to the heat kernel on the Heisenberg group, which is one of the simplest sub-Riemannian space. The associated diffusion operator is hypoelliptic but not elliptic, which makes difficult the derivation of functional inequalities for the heat kernel. However, Driver and Melcher and more recently H.-Q. Li have obtained useful gradient bounds for the heat kernel on the Heisenberg group. We provide in this paper simple proofs of these bounds, and explore their consequences in terms of functional inequalities, including Cheeger and Bobkov type isoperimetric inequalities for the heat kernel.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 255, Issue 8, 15 October 2008, Pages 1905-1938