کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592666 1335121 2006 22 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Rearrangement inequalities for functionals with monotone integrands
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Rearrangement inequalities for functionals with monotone integrands
چکیده انگلیسی

The inequalities of Hardy–Littlewood and Riesz say that certain integrals involving products of two or three functions increase under symmetric decreasing rearrangement. It is known that these inequalities extend to integrands of the form F(u1,…,um) where F is supermodular; in particular, they hold when F has nonnegative mixed second derivatives ∂i∂jF for all i≠j. This paper concerns the regularity assumptions on F and the equality cases. It is shown here that extended Hardy–Littlewood and Riesz inequalities are valid for supermodular integrands that are just Borel measurable. Under some nondegeneracy conditions, all equality cases are equivalent to radially decreasing functions under transformations that leave the functionals invariant (i.e., measure-preserving maps for the Hardy–Littlewood inequality, translations for the Riesz inequality). The proofs rely on monotone changes of variables in the spirit of Sklar's theorem.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 233, Issue 2, 15 April 2006, Pages 561-582