کد مقاله | کد نشریه | سال انتشار | مقاله انگلیسی | نسخه تمام متن |
---|---|---|---|---|
4592678 | 1335125 | 2008 | 16 صفحه PDF | دانلود رایگان |
عنوان انگلیسی مقاله ISI
A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow
دانلود مقاله + سفارش ترجمه
دانلود مقاله ISI انگلیسی
رایگان برای ایرانیان
موضوعات مرتبط
مهندسی و علوم پایه
ریاضیات
اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله

چکیده انگلیسی
We establish a point-wise gradient estimate for all positive solutions of the conjugate heat equation. This contrasts to Perelman's point-wise gradient estimate which works mainly for the fundamental solution rather than all solutions. Like Perelman's estimate, the most general form of our gradient estimate does not require any curvature assumption. Moreover, assuming only lower bound on the Ricci curvature, we also prove a localized gradient estimate similar to the Li–Yau estimate for the linear Schrödinger heat equation. The main difference with the linear case is that no assumptions on the derivatives of the potential (scalar curvature) are needed. A classical Harnack inequality follows.
ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 255, Issue 4, 15 August 2008, Pages 1008-1023
Journal: Journal of Functional Analysis - Volume 255, Issue 4, 15 August 2008, Pages 1008-1023