کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592737 1335137 2008 31 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Sufficient enlargements of minimal volume for finite-dimensional normed linear spaces
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Sufficient enlargements of minimal volume for finite-dimensional normed linear spaces
چکیده انگلیسی

Let BY denote the unit ball of a normed linear space Y. A symmetric, bounded, closed, convex set A in a finite-dimensional normed linear space X is called a sufficient enlargement for X if, for an arbitrary isometric embedding of X into a Banach space Y, there exists a linear projection such that P(BY)⊂A. The main results of the paper: (1) Each minimal-volume sufficient enlargement is linearly equivalent to a zonotope spanned by multiples of columns of a totally unimodular matrix. (2) If a finite-dimensional normed linear space has a minimal-volume sufficient enlargement which is not a parallelepiped, then it contains a two-dimensional subspace whose unit ball is linearly equivalent to a regular hexagon.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 255, Issue 3, 1 August 2008, Pages 589-619