کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592742 1335137 2008 29 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
On the equipartition of energy for the critical NLW
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
On the equipartition of energy for the critical NLW
چکیده انگلیسی

We study some qualitative properties of global solutions to the following focusing and defocusing critical NLW:□u+λu|u|2∗−2=0,λ∈R,u(0)=f∈H˙1(Rn),∂tu(0)=g∈L2(Rn) on R×RnR×Rn for n⩾3n⩾3, where 2∗≡2nn−2. We will consider the global solutions of the defocusing NLW   whose existence and scattering property is shown in [J. Shatah, M. Struwe, Well-posedness in the energy space for semilinear wave equations with critical growth, Int. Math. Res. Not. (7) (1994) 303–309 (electronic); H. Bahouri, J. Shatah, Decay estimates for the critical semilinear wave equation, Ann. Inst. H. Poincaré Anal. Non Linéaire 15 (6) (1998) 783–789] and [H. Bahouri, P. Gérard, High frequency approximation of solutions to critical nonlinear wave equations, Amer. J. Math. 121 (1) (1999) 131–175], without any restriction on the initial data (f,g)∈H˙1(Rn)×L2(Rn). As well as the solutions constructed in [H. Pecher, Nonlinear small data scattering for the wave and Klein–Gordon equation, Math. Z. 185 (2) (1984) 261–270] to the focusing NLW   for small initial data and to the ones obtained in [C. Kenig, F. Merle, Global well-posedness, scattering and blow-up for the energy critical focusing non-linear wave equation, preprint], where a sharp condition on the smallness of the initial data is given. We prove that the solution u(t,x)u(t,x) satisfies a family of identities, that turn out to be a precised version of the classical Morawetz estimates (see [C. Morawetz, Time decay for the nonlinear Klein–Gordon equation, Proc. Roy. Soc. London Ser. A 306 (1968) 291–296]). As a by-product we deduce that any global solution to critical NLW belonging to a natural functional space satisfies:limR→∞1R∫R∫|x|

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 255, Issue 3, 1 August 2008, Pages 726–754
نویسندگان
, ,