کد مقاله کد نشریه سال انتشار مقاله انگلیسی نسخه تمام متن
4592870 1335155 2007 19 صفحه PDF دانلود رایگان
عنوان انگلیسی مقاله ISI
Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds
موضوعات مرتبط
مهندسی و علوم پایه ریاضیات اعداد جبر و تئوری
پیش نمایش صفحه اول مقاله
Universal bounds for eigenvalues of the biharmonic operator on Riemannian manifolds
چکیده انگلیسی

In this paper we consider eigenvalues of the Dirichlet biharmonic operator on compact Riemannian manifolds with boundary (possibly empty) and prove a general inequality for them. By using this inequality, we study eigenvalues of the Dirichlet biharmonic operator on compact domains in a Euclidean space or a minimal submanifold of it and a unit sphere. We obtain universal bounds on the (k+1)th eigenvalue on such objects in terms of the first k eigenvalues independent of the domains. The estimate for the (k+1)th eigenvalue of bounded domains in a Euclidean space improves an important inequality obtained recently by Cheng and Yang.

ناشر
Database: Elsevier - ScienceDirect (ساینس دایرکت)
Journal: Journal of Functional Analysis - Volume 245, Issue 1, 1 April 2007, Pages 334-352